
Ann Math Artif Intell (2010) 60:91–117
DOI 10.1007/s10472-010-9212-z

Learning cluster-based structure to solve constraint
satisfaction problems

Xingjian Li · Susan L. Epstein

Published online: 7 September 2010
© Springer Science+Business Media B.V. 2010

Abstract The hybrid search algorithm for constraint satisfaction problems described
here first uses local search to detect crucial substructures and then applies that
knowledge to solve the problem. This paper shows the difficulties encountered
by traditional and state-of-the-art learning heuristics when these substructures are
overlooked. It introduces a new algorithm, Foretell, to detect dense and tight sub-
structures called clusters with local search. It also develops two ways to use clusters
during global search: one supports variable-ordering heuristics and the other makes
inferences adapted to them. Together they improve performance on both benchmark
and real-world problems.

Keywords Cluster · Structure learning · Hybrid search ·
Constraint satisfaction problem

Mathematics Subject Classification (2010) 68T20

1 Introduction

A problem solver that begins with a general algorithm for search may well be
surprised, or even defeated, by difficult subproblems that lurk within the larger one.

X. Li (B) · S. L. Epstein
Department of Computer Science,
The Graduate Center of The City University of New York,
New York, NY 10016, USA
e-mail: xli1@gc.cuny.edu

S. L. Epstein
Department of Computer Science,
Hunter College of The City University of New York,
New York, NY 10065, USA
e-mail: susan.epstein@hunter.cuny.edu

92 X. Li, S.L. Epstein

Indeed, many modern algorithms are now designed to learn about such subproblems
during search, as they encounter them. The thesis of this paper, however, is that it
is possible, and better, to identify such subproblems before search, and then exploit
them both to solve and to understand the problem at hand. The principle result of
this paper is that it is feasible to detect difficult subproblems within a challenging
constraint satisfaction problem (CSP) and then exploit a structure composed of
them, both to solve the CSP effectively and to explain it to a user. On certain bench-
mark problems, this approach achieves as much as an order of magnitude speedup.
Moreover, the learned structure provides a meaningful high-level formulation
of the problem.

Search-ordering heuristics can be misled if they overlook the inherent structure
of a problem. A binary CSP, for example, has a set of variables, each with a domain
of values, and a set of constraints, each of which restricts how some pair of variables
can be bound simultaneously. Such a problem is often represented as a graph where
each variable is a node and each constraint is an edge between the pair of variables it
restricts. When search for a CSP’s solution assigns values to variables one at a time,
the order in which the variables are addressed is crucial to search performance. Such
search is typically supported by variable-ordering heuristics that prefer variables
of high degree in the associated graph. Difficult subproblems, however, are not
necessarily characterized by such variables.

What is really needed is an effective reasoning mechanism that predicts and
exploits difficult subproblems. The traditional graph in Fig. 1a, for example, plots
its 200 variables on a circle, and offers little insight or guidance to a solver. Figure 1b
redraws Fig. 1a by extracting some variables from the central circle, and Fig. 1c
darkens the more restrictive constraints. This formulation is clear only to the problem
generator, however. Without the knowledge in Fig. 1c, the problem could not be
solved in 30 min by a traditional heuristic. Two learning heuristics (described below)
solved it in about 127 and 88 s. This paper develops algorithms that detected the
graph in Fig. 1d and used it to solve the same problem, all in 3.56 s.

Although many challenging real-world problems can be modeled as CSPs, their
graphs often have non-random structure that makes them difficult to solve for heuris-
tics that ignore it. Here, a cluster in a CSP is a subproblem that is particularly difficult

Fig. 1 A cluster graph predicts subproblems crucial to search. a An uninformative graph for a CSP
places the variables on the circumference of a circle. b The hidden structure of the same problem,
given perfect knowledge. c Darker edges represent tighter constraints in the same problem. d A
cluster graph displays critical portions of the problem. This graph was detected from (a) by local
search

Cluster-based structure to solve constraint satisfaction problems 93

to solve, and a cluster graph is a structural model that illustrates the relationships
among all a CSP’s discovered clusters. The next section provides background and
formal definitions for constraint satisfaction problems and search for solutions to
them. Section 3 describes related work on structure, while Section 4 investigates
how perfect structural foreknowledge like Fig. 1c might best be used during search.
Section 5 describes Foretell, a local search algorithm that detects clusters; Section 6
provides cluster graphs for several interesting CSPs. Section 7 explores several
variable-ordering heuristics that are based on structural knowledge learned by
Foretell. Section 8 investigates how such structural knowledge can be used in
constraint inference; Section 9 provides experimental results for these algorithms
on benchmark and read-world problems. The final section discusses the results and
future work.

2 Background

Constraint satisfaction searches for a solution to a problem that satisfies a set of
restrictions. Many combinatoric problems, such as scheduling, can be represented
as CSPs. Because CSP solution is NP-complete [26], no general-purpose polynomial
time algorithm is likely to exist. Instead, much work has been directed toward the
design of algorithms with shorter average run-times. This section introduces basic
CSP terminology and some relevant search methods.

2.1 Constraint satisfaction problems

A constraint satisfaction problem is represented by a triple < X, D, C >, where:

• X is a set of variables, X = {X1, . . . , Xn}
• The domain of variable Xi is a finite and discrete set of its possible values Di ∈ D
• C is a set of constraints that restrict the values the variables in it scope Si ⊆ X

can hold simultaneously

A constraint Ci uses a relation Ri to indicate which tuples in the Cartesian product of
the domains of the variables in Si are acceptable. If Ci is extensional, Ri enumerates
the tuples; if Ci is intensional, Ri is a boolean predicate over all the tuples. This
paper deals primarily with extensional CSPs, all of whose constraints are extensional.
(Some empirical results on intensional CSPs, all of whose constraints are intensional,
appear in Section 9.) A subproblem < V, D′, C′ > of a CSP < X, D, C > is a
CSP induced by a subset of variables V ⊆ X, where D′ = {Di ∈ D|Xi ∈ V} and
C′ = {Ci|Si is the scope of Ci and Si ⊆ V}.

The arity of a constraint is the cardinality, or size, of its scope. A unary constraint
is defined on a single variable; a binary constraint, on two variables. Let binary
constraint Cij have scope (Xi, X j), where Xi’s domain is Di and X j’s domain is Dj.
If Cij excludes r value pairs from Xi × X j, then its tightness t(Cij) is defined as the
percentage of possible value pairs Cij excludes:

t
(
Cij

)
= r

|Di| ×
∣∣Dj

∣∣ where r ≤ |Di| ×
∣∣Dj

∣∣ (1)

94 X. Li, S.L. Epstein

Although for intensional Ci (1) could require a test on every possible tuple, some
predicates (e.g., disjunctive inequalities over integer intervals) permit direct calcula-
tion of r.

This paper focuses on binary CSPs, which have only unary and binary constraints.
A binary CSP can be represented as a constraint graph, where each variable is a node,
each binary constraint is an edge, nodes are labeled by their domains, and each edge
is labeled by the legal value pairs for that constraint. Two variables whose nodes
are joined by an edge in the constraint graph are neighbors, and the static degree of a
variable is the number of its neighbors. An instantiation of size k is a value assignment
of a subset of k variables in X. If k < n, it is a partial instantiation; if k = n, it is a full
instantiation. A solution to a CSP is a full instantiation that satisfies every constraint.
A solvable CSP has at least one solution; an unsolvable CSP has no solution.

A CSP problem class is a set of CSPs that are categorized as similar, such as all
CSPs that share the same parameters < n, k, d, t >, where n denotes the problem’s
number of variables, k its maximum domain size, d its density, and t the average of
the tightness of its individual constraints. The density d(P) of a CSP P is defined as
the fraction of the n(n−1)

2 possible pairs of variables that could be restricted:

d (P) = 2 |C|
n (n − 1)

(2)

A class of structured problems can also be parameterized. For example, a class of
artificially generated composed CSPs can be written as

< n, k, d, t > s < n′, k′, d′, t′ > d′′ t′′ (3)

Each problem in (3) partitions its variables into subproblems, one designated as the
central component and the others as satellites. There are some constraints (links)
between satellite variables and variables in the central component, but none between
variables in distinct satellites. The central component is in < n, k, d, t >. There are
s satellites (each in < n′, k′, d′, t′ >), and links with density d′′ and tightness t′′. Let
there be l links between the central component and the s satellites. Then the link
density d′′ is the fraction of the nsn′ possible link edges present:

d′′ = l
nsn′ where l ≤ nsn′, (4)

and the link tightness t′′ is the average tightness of all its links. Figure 1a is an
unsolvable problem in

Comp =< 100, 10, 0.15, 0.05 > 5 < 20, 10, 0.25, 0.50 > 0.12, 0.05

which has one tightness uniformly within its central component and along its links,
but another uniform tightness within its satellites. Figure 1c redraws it with the
central component along the large circle and each satellite on a separate circle.
Structured CSPs, including Comp, have characteristics that can be exploited by a
specialized method to outperform a more general one. They also offer an opportunity
to explore the impact and management of difficult subproblems.

Cluster-based structure to solve constraint satisfaction problems 95

2.2 Search for a solution to a CSP

Search for a solution to a CSP moves through the space of its possible instantiations.
Global search traverses the space of partial and full instantiations, while local search
is restricted to the space of full instantiations.

2.2.1 Global search

Global search begins with an empty instantiation, where no variable is assigned a
value. Global search traverses the search space systematically, assigning a value to
one unbound variable at a time. Global search is complete because it is always able
to find every solution. Thus, failure by global search to find a solution proves that the
problem is unsolvable. A problem is labeled “solved” in this paper if global search
finds a solution or proves that none exists.

During global search, from the perspective of a given node, an instantiated
variable is called a past variable and an unbound variable is called a future variable.
The dynamic degree of a variable is the number of its neighbors that are future
variables. An instantiation for a future variable is consistent if it does not violate any
constraint with a past variable. An inconsistent instantiation violates one or more
constraints. Because global search traverses a search space systematically to find a
solution, pruning the search space could accelerate this process. Inference attempts
such pruning; it propagates the effect of an instantiation on the domains of the future
variables. If a domain becomes empty (a wipeout), search backtracks, that is, it re-
tracts the instantiation of the current variable and restores the domains that had been
reduced by that instantiation. This paper uses chronological backtracking, which
revisits each value assignment in order of recency. Figure 2 provides pseudocode for
global search.

Two well-known inference methods are forward checking and arc consistency.
Immediately after the instantiation of a variable x, forward checking removes all
inconsistent values from the domains of all future variables that are neighbors of
x [19]. Arc consistency is a potentially more powerful inference method. Along a
binary constraint Cij between variables Xi and X j in a CSP, value a ∈ Di is supported
by b ∈ Dj if and only if xi = a and x j = b together satisfy Cij. Cij is arc consistent
if and only if every value in Di has some support in Dj and every value in Dj has
some support in Di. If every constraint in a CSP is arc consistent, then the CSP is arc
consistent. MAC-3 is an inference method that maintains a problem’s arc consistency
during search. Immediately after the instantiation of variable x, MAC-3 enqueues
the edges from x to all its future variable neighbors, and then checks each element

Algorithm 1: Pseudocode for CSP global search

Until all variables have values that satisfy all constraints OR
 some variable at the root has an empty domain
 Select a variable
 Assign a value to this variable
 Infer the impact of this assignment ; *inference*
 If a wipeout occurs, backtrack

Fig. 2 Pseudocode for global search

96 X. Li, S.L. Epstein

of the queue for domain reduction [34]. Whenever this process reduces the domain
of any future variable z, MAC-3 enqueues every constraint between z and its future
variable neighbors, and iterates until its queue is empty.

Proper choice of the next variable to instantiate can significantly improve search
performance. Variable-ordering heuristics may provide crucial advice for global
search. A variable-ordering heuristic usually follows the fail-first principle which
states “To succeed, try first where you are most likely to fail” [19]. MinDom seeks to
minimize search tree size by reducing the branch factor; it prefers variables with small
dynamic domains, the values remaining after inference. MaxDeg focuses on variables
with many constraints; it prefers variables with high dynamic degree. MinDomDeg
combines the two: it prefers variables that minimize their ratio of dynamic domain
size to dynamic degree. MinDomDeg is an effective off-the-shelf variable-ordering
heuristic, but can be outperformed by other heuristics that learn during search.

Weighted degree is a conflict-directed variable-ordering heuristic [2]. It associates
each constraint with a weight, initialized to 1. During search, whenever a wipeout
is encountered, the weight of the constraint that causes this wipeout is incremented
by 1. The weighted degree of a variable Xi is the sum of the weights of all constraints
between Xi and its unbound neighbors. MaxWdeg is a variable-ordering heuristic
that selects a variable with the highest weighted degree. MaxWdeg is adaptive; it
gradually guides search toward constraints that cause wipeouts. Another adaptive
heuristic, MinDomWdeg, minimizes the ratio of dynamic domain size to weighted
degree.

2.2.2 Local search

Local search begins with a full instantiation. It moves from one full instantiation
to another until some full instantiation is a solution. The distance between two full
instantiations is the number of different variable assignments. The k-neighborhood
of a full instantiation s includes s and all the full instantiations within distance k of s.
Any full instantiation in s’s neighborhood is s’s neighbor. In local search, each move
is determined by a decision based on only local knowledge, the information inherent
in the neighborhood of the current full instantiation being investigated. Figure 3
provides pseudocode for local search.

Within a neighborhood, local search uses an evaluation function to determine
which neighbor is the most improved full instantiation. This function maps full
instantiations onto the real numbers, and maps solutions onto a global maximum.
Given such an evaluation function, local search chooses a neighbor whose value
is a maximum within the neighborhood and is larger than that of the current full

Algorithm 2: Pseudocode for CSP local search

current-solution ← Generate-Initial-Full-Instantiation()
Until current-solution violates no constraint
 best-neighbor ← Find-best-neighbor(current-solution)
 if best-neighbor is better than current-solution
 then current-solution ← best-neighbor
 else Escape-local-optimum()

Fig. 3 Pseudocode for local search

Cluster-based structure to solve constraint satisfaction problems 97

instantiation. Given an evaluation function f , a search space S and a neighborhood
relation N ⊆ S × S, a full instantiation s is a local optimum if and only if for all
s′ ∈ N(s), f (s′) ≤ f (s) and s is not a solution.

Local search normally requires less space than systematic search because it re-
members few visited states. It often finds CSP solutions much faster than systematic
search [30] and may be more effective on some real-time problems (e.g., game
playing). Local search can be become trapped at a local optimum, however, and
some points in the search space may be inaccessible from the start state. One way
to escape from local optima is to change neighborhoods during search.

2.2.3 Variable neighborhood search

The local optima of one neighborhood are not necessarily also local optima in
another. The larger the neighborhood a full instantiation checks, the better the
chance to improve the current full instantiation and the less likely it is to get trapped
in local optima. Variable Neighborhood Search (VNS) uses multiple neighborhoods
of increasing size [18]. Figure 4 provides pseudocode for VNS, a non-deterministic
search through k neighborhoods.

VNS succeeds on a wide range of combinatorial and optimization problems [17].
It works outward from an initial subset of variables (Fig. 4, line 1) in a relatively small
neighborhood in a graph through k pre-specified, increasingly large neighborhoods
(lines 2–3). Each neighborhood restricts the current options; as VNS iterates, each
new neighborhood provides a larger search space. Within a neighborhood, Variable
Neighborhood Descent (VND) is a local search algorithm that tries to improve
the current subset (best-yet) according to a metric, score. A better local optimum
resets best-yet and returns to the first neighborhood (lines 6–9); otherwise search
proceeds to the next neighborhood (lines 10–11). Shaking (line 5) shifts search within
the current neighborhood and randomizes the current best-yet to explore different
portions of the search space. As index increases, the neighborhoods become larger,
so that the shaken version of best-yet becomes less similar to best-yet itself. The user-
specified stopping condition (line 4) is either elapsed time or movement through
some number of increasingly large neighborhoods without improvement. The initial
subset, the score metric, and the local search routine vary with the application.

VND greedily extends best-yet from neighborhood. Once its greedy steps are
exhausted, VND repeatedly interchanges one element of its current subset for two

Algorithm 3: VNS on k neighborhoods

1 best-yet ← initial-subset
2 index ← 1
3 neighborhood ← neighborhood(index)
4 until stopping condition or index = k
5 unless index = 1, best-yet ← shake(best-yet, index)
6 local-optimum ← local-search(best-yet, neighborhood) ;*VND*
7 if score(local-optimum) > score(best-yet)
8 then best-yet ← local-optimum
9 index ← 1
10 else index ← index + 1
11 neighborhood ← neighborhood(index)

Fig. 4 Pseudocode for VNS

98 X. Li, S.L. Epstein

1 1 2
1 2

3
1 2

3 4

5
1

3 4

5
1

3

5
(a)

(b) (c) (d)

(f)(e)

Fig. 5 Selected VND steps to find a maximum clique in graph (a). b A starting vertex. c, d Greedy
steps add vertices adjacent to every selected vertex, one at a time. e A swap replaces vertex 2 with
vertices 4 and 5. f VNS for index = 1 shakes out one randomly selected vertex. See the text for further
details

elements in neighborhood and breaks ties greedily. In the search for a maximum
clique, for example, VND swaps out some variable v in best-yet for two adjacent
variables that are not neighbors of v and were not in best-yet, but are neighbors of
all the other variables already in best-yet, and breaks ties with maximum variable
degree. An alternative produced by VND replaces best-yet only if it outscores it.

Figure 5 is a sample of steps that might occur during a call to VND during search
for a maximum clique in a simple graph. The initial subset is a vertex that is a
neighbor of every vertex in the graph, and the local search metric is subset size.
VND adds one vertex adjacent to every vertex in the growing subgraph. (This is
the greedy step; ties are broken on maximum degree in the original graph.) When
greedy steps are no longer possible, local search swaps out one vertex for a pair of
adjacent vertices that are also adjacent to every other vertex in the subgraph, as in
Fig. 5e. Eventually neither greedy steps nor swaps can be found. Then the subgraph
is returned to VNS, scored, stored if it is the best so far, and then shaken before local
search resumes.

Local search is incomplete because it does not search systematically. Thus, it can-
not prove a CSP is unsolvable, as real-world problems often are. The work reported
here first exploits local search to consider the O(2n) set of possible subproblems in
a CSP, and then guides global search with the outcome of local search to solve the
problem.

3 Related work

The heavily constrained, highly interactive subproblems our algorithms identify and
exploit in a CSP are called clusters. “Cluster” has been used elsewhere to describe
aggregations of data, portions of a solution space [22, 29], or relatively isolated, dense
areas in a graph [38]. Other work on clusters as subproblems assumed an acyclic
metastructure and addressed two classes of artificial problems, half the size of those
studied here, and offered no structural description or explanation [31].

A cluster graph identifies dense, tight subproblems before search begins. A
cluster graph groups together selected variables and their edges. Variables and
constraints not explicit in a cluster graph have nonetheless influenced its formation
(via pressure, described in the next section). Thus a cluster graph captures a kind

Cluster-based structure to solve constraint satisfaction problems 99

of fail-f irst metastructure that anticipates and confronts difficulties. This approach
differs, therefore, from methods that relax, remove, or soften constraints. The fail
first principle underlies many traditional variable-ordering heuristics intended to
speed global search [1, 14, 37].

With respect to a given search algorithm, the backdoor of a CSP is a set of
variables that, once assigned values, make the remainder of search trivial [33]. A
backdoor is typically less than 30% of the variables, but its identification before
search is NP-complete. Recent work suggested that both static and dynamic proper-
ties should be considered during search for a backdoor [9]. The formation of a cluster
graph prior to search considers both static (initial) shape and potential (dynamic)
changes in domain size. A cluster graph would, ideally, contain the backdoor, but
no claim is made here that it does so. Unlike [20, 21], cluster-based explanations are
available whether or not a problem has a solution.

An abstraction can be used to simplify a problem temporarily (e.g., [35]). Its solu-
tion is then gradually revised to accept additional problem detail, until the revision
solves the original problem. Because a cluster graph is applied with the traditional
graph, rather than as a replacement for it, no re-solution is necessary.

Variable-ordering heuristics respond to structure detected in the constraint graph.
A CSP whose graph is an arc-consistent tree can be solved without backtracking
[12, 13]. SAT problems generated with unsatisfiable large cyclic cores have stumped
many proficient SAT solvers [20]. To reduce a cyclic CSP to a tree, a solver could first
identify and then address some heuristic approximation of the (NP-hard) minimal
cycle cutset [6]. Cycle-ridden problems like those addressed here, however, have
cycle cutsets far too large to provide effective guidance. Most related work on
elaborate structural features that might facilitate search (including trees [27], acyclic
graphs [7], tree decomposition [5, 8, 36], hinges [16], and other complex structures
[15, 39, 40]) ignores the tightness of individual constraints and is primarily theoretical,
or it incurs considerable computational overhead unjustifiable on easy problems.

4 On the exploitation of structural foreknowledge

This section explores the power of foreknowledge about difficult subproblems to
guide search. The approaches it tests are not ultimately allowable as variable-
ordering heuristics. Rather they gauge how well knowledge about structure supports
search, and how best to use that knowledge. Results appear in Table 1. Note that
all experiments reported in this paper were run in ACE (the Adaptive Constraint
Engine), a test-bed for CSP solution [10]. Because ACE is a research tool that gathers
extensive data, it is highly informative but not honed for speed. Performance is there-
fore reported here both as elapsed CPU time in seconds and as number of nodes in
the search tree. All cited differences are statistically significant at the 95% confidence
level under a one-tailed t-test.

Standard variable ordering heuristics did poorly on Comp problems. Because
variables in the central component have much higher degrees, MinDomDeg was
immediately drawn to the central component and solved only two of 50 problems
within the time limit. Because links in Comp are so few and loose, wipeouts began
fairly deep in the search tree, after at least 36 variables had been bound. Retraction
only led MinDomDeg to repair its partial instantiation of the central component,

100 X. Li, S.L. Epstein

Table 1 On 50 Comp problems, mean and standard deviation for nodes and CPU seconds, including
time to find clusters. Search heuristics appear above the line. Search methods with perfect knowledge
(below the line) are not legitimate heuristics because they apply structural foreknowledge available
only to the problem generator, not the search engine. Until-11 is therefore only a target

Heuristic Time, µ (σ) Nodes, µ (σ)

MinDomDeg 1,728.157 (355.877) 285,751.970 (61,368.701)
MaxWdeg 123.000 (128.580) 20,817.640 (22,954.165)
MinDomWdeg 83.580 (38.964) 12,519.360 (5,811.370)

Satellite No problem solved
Stay 2.848 (3.584) 511.922 (416.345)
Until-11 1.612 (1.866) 398.776 (244.112)

while the true difficulties lay elsewhere, in the satellites. Since weighted degrees are
equal to actual degrees at the beginning of search, both MaxWdeg and MinDomWdeg
initially suffered from the same attraction to the central component. After enough
experience within the satellites, however, they eventually recovered and solved all
the problems. Although MinDomDeg cannot solve the problem in Fig. 1 within
30 min, the two learning heuristics eventually recover, with the solution time reported
in Section 1. Learning lacks the foresight clusters are intended to provide.

Now consider how heuristics might exploit foreknowledge about the problem.
Assume one was given the structure shown in Fig. 1c, and believed that the satellites
contained the backdoor. In that case, preference for satellite variables should speed
search. Rather than discard traditional variable-ordering heuristics, however, each
approach investigated here makes satellites a priority and then breaks ties with
MinDomDeg. Each approach was given 30 min to solve each problem.

The next experiments seek to exploit perfect structural foreknowledge. The
variable-ordering heuristic satellite examines whether mere presence in a satellite is
sufficient to warrant prioritization. On a Comp problem, this approach binds all 100
satellite variables first, in a random order, and then uses MinDomDeg on the central
component. On a single run, satellite never solved any problem within 30 min. (Given
its lack of promise, this is the only randomized heuristic that was tested only once.
All other non-deterministic experiments here report on an average of 10 runs.)

The variable-ordering heuristic stay addresses entire satellites first, one at a time
in a random order, before it selects any variable from the central component. Stay
selects a satellite at random, binds all its variables, and then proceeds to another
randomly chosen satellite. Within a satellite and within the central component, stay
breaks ties with MinDomDeg. Guided by the satellites, stay with MinDomDeg yields
dramatically improved results over the traditional heuristics; it averages less than 3 s
per problem with a 96% smaller search tree than MinDomWdeg.

Given that noteworthy improvement, and the fact that the satellites may only
estimate the backdoor of a Comp problem, the next approach binds only some of the
variables in each satellite. If MAC-3 is in use, for example, there would appear to be
little point in “finishing” a satellite once it is reduced to only a pair of variables (with
at most a single edge between them); until-2 selects a different satellite at that point.
The generalization of this approach, until-i, instantiates variables within a randomly
chosen satellite until all but i variables are bound, and then moves on to another
randomly chosen satellite. (Stay is equivalent to until-0.) Within a selected satellite

Cluster-based structure to solve constraint satisfaction problems 101

and later, within the central component and any “leftover” satellite variables, until-i
also uses MinDomDeg. We tested a range of values: i = 2, 3, . . . , 15.

Surprisingly, search need not stay long in a given satellite. For Comp, where the
satellites are of size 20, the clear winner was until-11, that is, search can address as
few as 45% of the variables in a satellite before safely moving on to the next one. In
contrast, the variable-ordering heuristic satellite-i, which randomly chooses satellite
variables that are not among the last i future variables in their satellite, performed
poorly. (Data omitted.) As i increases, satellite-i behaves more like MinDomDeg
alone does. (Section 10.2 considers why i = 11 was so successful.)

Clearly, structural foreknowledge is critical to search performance: known satel-
lites speed the solution of Comp problems when search addresses them one at a time.
The next section describes how knowledge about such dense, tight substructures can
be detected automatically, prior to search.

5 Cluster detection with Foretell

Intuitively, Foretell, the cluster finder described here, assembles sets of tightly related
variables whose domains are likely to reduce during search. Foretell was inspired
by VNS’ state-of-the-art speed and accuracy on the DIMACS maximum clique
problems [18]. A clique is a maximally dense graph, that is, one with all possible edges
between its variables. Intuitively, a near clique is a clique with a few missing edges.
(A more formal definition appears in Section 8.) Foretell searches for subproblems
that are tight near cliques, where the tightness of a subproblem P′ =< V, D′, C′ >

is the ratio of the product of the subproblem’s size and density to the sum of the
relevant domain products of its constraints;

tightness
(
P′) = |V| d

(
P′)

∑
Cij∈C′

(|Di|
∣∣Dj

∣∣) (5)

Note, for example, the missing edges in the clusters of Fig. 1d.
Foretell adapts VNS to detect substructures that are clusters. It relies on the

pressure on a variable v, the probability that, given all the constraints upon it, when
one of v’s neighbors is assigned a value, at least one value will be excluded from
v’s domain. Foretell uses pressure (instead of degree, as maximum clique search did
in Section 2.2.3) to greedily select variables. Precise calculation of the series that
defines pressure is computationally expensive. Instead, we devised an algorithm to
approximate quickly the first term in that series, corrected to avoid bias in favor
of variables with high degrees or large domains. For variable Vi with domain size
|Di| neighbors Ni and constraint with tightness tik between Vi and Vk ∈ Ni, the
approximate pressure on Vi, given the constraints on it, is

p (Vi) = 1
degree (Vi)

∑

Vk∈Ni

(
(|Di| − 1) · |Dk|

(1 − tik) |Di| · |Dk|
)

(|Di| · |Dk|
(1 − tik) |Di| · |Dk|

) (6)

A cluster’s score is the ratio of the product of its number of variables and density to
its average edge tightness. No cluster is returned unless it has at least 3 variables.

102 X. Li, S.L. Epstein

To find multiple clusters in a problem, Foretell finds a first cluster, removes those
variables and all constraints that include them in their scopes, and then iterates
to find the next cluster among the remaining variables and their constraints. Ties
unbroken by maximum pressure are broken by maximum degree, and then, if need
be, at random. Clusters are typically (but not always) detected in decreasing size
order. Because this is local search, some variation is expected from one pass to
the next. The maximum neighborhood index was taken from the original work on
maximum cliques: the minimum of 10 and the current cluster size [18].

6 Cluster structure detected in CSPs

To automatically generate a cluster graph, Foretell identifies clusters in a CSP and
then adds any constraints whose scope is fully contained among the cluster variables.
Applied to a broad range of benchmark problems taken from [23], this approach
produces cluster graphs that make explicit a variety of structure among the clusters
themselves. Figure 6 was produced with DrawCSP [24], a visualization tool that
displays the original constraint graph or identified cluster graph of binary CSPs.

The first category of structure is a set of isolated clusters, or pairs of clusters, in
the cluster graphs for composed problems. The cluster graph in Fig. 6a for a Comp
problem is suggestive of its tightest edges. Because satellites, with density 0.25, are
far from cliques, quite often more than one cluster lies in the same satellite. Thus
some clusters are linked. Figure 6b shows a similar structure for another composed
CSP, designated 25–10–20 in [23] or, in our notation,

< 25, 10, 0.667, 0.15 > 10 < 8, 10, 0.786, 0.5 > 0.01, 0.05

The larger satellite density (0.786) in 25–10–20 encourages the formation of some-
what larger clusters, but typically leaves too few edges to form two clusters in one
satellite. Thus its clusters are isolated from one another.

Clusters are not always composed from only the tightest edges. RLFAP here
is scene 11 of the radio link frequency problems [3]. Its many constraints vary
dramatically in tightness. Figure 6c shows only the tightest constraints, with the 680
variables on two concentric circles. This is a bipartite graph with 340 constraints each
of which has tightness greater than 0.9. The cluster graph in Fig. 6e is considerably
more informative. Foretell found the same 4 clusters, of size 18, 13, 12 and 10, on
every run (Not every run detected the cluster of size 14). These 53 variables are
the crux of the RLFAP scene 11 problem, the part that makes its rapid solution
possible. Only 26, out of 340, of the tightest edges appear in the cluster graph at
all. We also tested driverlog problems from a planning competition [23]. The one
in Fig. 6d displays a more closely coupled cluster graph in Fig. 6f. Other driverlog
problems also display a path-like structure in their cluster graphs.

7 Exploitation of structural knowledge to guide search

This section seeks to exploit clusters detected automatically by Foretell, much the
way foreknown satellites were used in Section 4. Foretell never found a cluster larger

Cluster-based structure to solve constraint satisfaction problems 103

Fig. 6 CSPs display different structures. Each cluster is drawn within a circle; tighter edges are
darker. Cluster labels are number of variables, number of additional edges needed to make it a
clique, and Foretell score. a Cluster graph for a Comp problem. b Cluster graph for a composed 25–
10–20 problem. c Edges with tightness >0.9 in RLFAP scene 11 and d in the driverlogw-08c problem.
e Cluster graph for RLFAP scene 11 and f for the driverlogw-08c problem

104 X. Li, S.L. Epstein

than 6 variables in a Comp problem; instead it found multiple (disjoint) clusters
in individual satellites, clusters that covered satellites only partially. The primary
question then becomes how best to exploit clusters. Is it, for example, better to shift
from one cluster to another during search, or to solve them one at a time? And if
one at a time, in what order should the clusters be considered? Perhaps one would
address the cluster that at the moment is the tightest. The true dynamic tightness of a
cluster c on variables Vc is the ratio of the number of tuples that satisfy its unbound
variables under the current partial instantiation to the product of their dynamic
domain sizes:

dynamic-tightness (c) = |satisfying-assignments (c)|∏
v∈Vi

original-domain (v)
(7)

(7) is too expensive to calculate repeatedly, as is a dynamic version of pressure in
(6). Instead, the dynamic tightness of a cluster c is estimated here as the ratio of the
product of the current domain sizes of those variables to the product of their original
domain sizes:

estimated-tightness (c) =

∏
v∈Vc

|dynamic-domain (v)|
∏

v∈Vc

|original-domain (v)| (8)

The variable-ordering heuristic tight selects a variable from the (estimated)
dynamically tightest cluster. Search guided by tight, however, could shift from one
cluster to another, and therefore from one satellite to another in Comp, the way
the poorly-performing satellite did. The improvement produced by stay in Table 1
therefore inspired heuristics that treat one cluster at a time. Concentrate chooses
a cluster at random, selects variables from it until all of them are bound, and
then selects the next cluster at random. In contrast, focus selects the (estimated)
dynamically tightest cluster, selects variables from it using a traditional variable-
ordering heuristic (e.g., MinDomWdeg) until all of them are bound, and then uses
estimated dynamic tightness to select the next cluster. Note that tight, concentrate
and focus only select clusters, not variables. A traditional variable-ordering heuristic
is required to select variables within the current cluster of interest. Concentrate-i and
focus-i are analogous to until-i in Section 4; they instantiate within a cluster until all
but i of its variables have been bound. In all these heuristics, if clusters have the same
maximum tightness, ties are broken by maximum dynamic cluster size, the number
of unbound variables in a cluster.

In the experiments in this section, each heuristic had 30 min to solve each
Comp problem. Data for all non-deterministic algorithms, including those involving
clusters, is reported as an average across 10 runs. For the heuristics that use cluster
detection, time e is allocated to VNS per cluster. Thus a problem in which s clusters
were detected could require up to se time. (Because elapsed time is tested only at the
end of a loop iteration, it is possible to slightly exceed se in practice.) The total VNS
time required to find clusters is included in all search time data.

On Comp problems, Foretell finds clusters that form a structure remarkably like
foreknowledge. It found between 6 and 19 clusters per problem, all of sizes 3 to 6. It
found at least one cluster in every satellite in every problem on every run. A typical

Cluster-based structure to solve constraint satisfaction problems 105

Table 2 Cluster-guided search speeds traditional heuristics on Comp by more than an order of
magnitude. Average and standard deviation are shown for nodes and time in CPU seconds, including
time for cluster detection. Data above the line is repeated from Table 1. Except for MinDomDeg,
every method solved every problem. Focus is statistically significantly better (in bold) than all the
heuristics tested. Until-11 is a target, not a legitimate heuristic; it applies foreknowledge about
structure available only to the problem generator, not to the search engine

Heuristic Time, µ (σ) Nodes, µ (σ)

MinDomDeg 1,728.157 (355.877) 285,751.970 (61,368.701)
MaxWdeg 123.000 (128.580) 20,817.640 (22,954.165)
MinDomWdeg 83.580 (38.964) 12,519.360 (5,811.370)
Until-11 1.612 (1.866) 398.776 (244.112)

Tight 4.705 (6.252) 505.296 (718.029)
Concentrate 5.461 (5.628) 836.434 (876.539)
Focus 4.311 (2.411) 497.964 (324.327)
Focus-1 5.267 (3.215) 516.406 (425.739)
Focus-2 8.713 (22.442) 1,371.338 (2,765.681)

result appears in Fig. 1d. With e = 0.2 s per cluster, VNS search time averaged 2.111 s
per problem, 49% of the total time.

Clusters guide search in Comp effectively, as shown below the line in Table 2.
Concentrate’s weaker performance clearly indicates that the order in which clusters
are addressed is important. Unlike stay, however, focus appears to need to finish
a cluster to produce its best performance. Essentially, by i = 3, both concentrate-i
and focus-i deteriorate to MinDomWdeg. (Data omitted.) A full graphic comparison
(Fig. 7) indicates that even focus-2 and concentrate-2 solve most Comp problems
far more quickly than the learning heuristics MaxWdeg and MinDomWdeg do
alone. Also, concentrate solves more Comp problems than tight in 45 s or less. One

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

0 15 30 45 60 75 90 105 120 135 150 More

C
um

ul
at

iv
e

%
 s

ol
ve

d

Time (seconds)

focus

focus-1

concentrate

tight

focus-2

concentrate-2

MinDomWdeg

MaxWdeg

Fig. 7 Cumulative percentage of 50 Comp problems solved. Solvers were allocated 30 min per
problem. Because it solved only two of the problems, MinDomDeg was omitted

106 X. Li, S.L. Epstein

possible explanation is that in these CSPs Foretell’s clusters are all of roughly equal
importance, so that concentrate benefits from a refusal to shift from one cluster to
another. As more clusters are solved, however, it becomes important to instantiate
within tight clusters, so that tight would then have an advantage. Focus combines the
best of both approaches.

Given the vagaries of local search, one cannot expect VNS to produce an adequate
set of clusters every time. Rather than allot substantial time to VNS (which should
ultimately find adequate clusters that way), we used MinDomWdeg to select indi-
vidual variables within a cluster. MinDomWdeg is slightly slower than MinDomDeg
at selecting variables inside a cluster, but it also provides backup if Foretell’s local
search is simply “unlucky.” Learning is there to help, although it is rarely necessary.

8 Clusters and inference

A cluster graph also provides information that can be harnessed to guide inference.
Inference methods can be characterized along a spectrum by the effort they expend.
More inference does not always result in more domain reduction—it is often faster to
risk and retract mistakes than to anticipate them. Inference after every assignment,
as in Algorithm 1, is called consistency maintenance. FC and MAC-3 (as described
in Section 2.2.1) are commonly used to maintain consistency. FC enforces a lower
level of consistency by only propagating the effect of a variable assignment to its
neighbors. MAC-3 does considerably more work to propagate that effect to the
entire problem. ACR-k takes a stance between FC and MAC-3 [10]. It begins with
the same initial queue as MAC-3, but subsequently enqueues only constraints on
variables whose dynamic domains lose at least k% of their values. (The R is for
“response.”) Intuitively, higher values for k make ACR lazier.

With the structural knowledge detected by Foretell, it becomes possible to fine
tune consistency enforcement. Cluster-based inference considers where other vari-
ables lie with respect to the clusters. Each cluster C in problem P delineates a
fringe (variables in P − C within width edges of some variable in C), and an outside
(P − C − f ringe(C)), as shown in Fig. 8. The question then becomes how to select
propagation methods for the cluster, the fringe, and the outside.

To begin, we generated classes of small, not necessarily solvable CSPs similar to
the clusters Foretell finds. The densest possible graph is a clique. Intuitively, a near
clique is a subgraph that is a few edges short of a clique. A near clique is defined
recursively as follows:

• The clique on 3 vertices K3 is a near clique.
• Given a near clique NC =< V, E > with missing edges m = |V|(|V|−1)

2 − |E|

Fig. 8 Propagation regions
delineated with respect
to a cluster

Cluster-based structure to solve constraint satisfaction problems 107

a new near clique NC′ =< V∪ {v}, E∪ {e1, e2, ..., ek}> can be constructed from NC
by the introduction of a new vertex v and k new edges e1, e2, ..., ek to NC such that
the increase "m in the number of missing edges conforms to

"m <
|V|
2

+ m
|V| − 1

(9)

Fig. 9 Number of a checks,
b expanded nodes, and c CPU
seconds required to solve
cluster-like graphs of various
sizes under seven different
propagation methods.
Lazier propagation does fewer
checks, expands more nodes,
and is sometimes faster

(a)

(b)

(c)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

5 11 13

C
on

st
ra

in
t c

he
ck

s
(K

)

Structure size

AC
ACR 0.3
ACR 0.4
ACR 0.5
ACR 0.6
ACR 0.7
FC

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

N
od

es

FC
ACR 0.7
ACR 0.6
ACR 0.5
ACR 0.4
ACR 0.3
AC

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ti
m

e
(s

ec
on

ds
)

FC

ACR 0.7

ACR 0.6

ACR 0.5

ACR 0.4

ACR 0.3

AC

7 9

5 11 13
Structure size

7 9

5 11 13
Structure size

7 9

108 X. Li, S.L. Epstein

For |V| > 3, (8) requires

m ≤
⌊ |V| − 1

2

⌋
(10)

To simulate Foretell’s clusters, we generated classes of CSPs that were near cliques
of sizes 5 to 13 with edge tightness 0.5, and solved them with MinDomDeg in separate
runs that maintained consistency with FC, MAC-3, or a MAC-3-like version of
ACR-k for k from 0.3 to 0.7. The results appear in Fig. 9. AC is warranted
while clusters are of size no more than 7, but on larger simulated clusters it is
statistically significantly slower than ACR-0.4. ACR-0.4 also showed low variation
in performance on the simulated clusters.

The structure of a cluster graph suggests the design of cluster-based inference
methods. Let c/w/ f/o be a cluster-based method that propagates within a cluster
with method c, within its fringe of width w with method f , and outside with method o.
For Comp, the clusters in Fig. 6a are small; that mandates AC propagation within
them. Because Comp clusters are often linked, even a fringe of width 1 may
reach other clusters. Thus AC is a wise approach within the fringe as well. Once
outside the clusters, propagation can afford to be lazier. Thus a reasonable cluster-
based propagation method for Comp is as AC/2/AC/FC. RLFAP’s cluster graph is
different; the clusters are larger, so that propagation within clusters of ACR 0.4 is
reasonable. The relative isolation of the four crucial clusters there suggests propa-
gation in the fringe with ACR-0.6, but FC is expected to be safe in the rest of the
graph. This produces the method ACR-0.4/1/ACR-0.6/FC. Finally, the large clusters
in the driver problems are so closely connected that it may only be reasonable to
attempt ACR-0.4/1/ACR- 0.5/FC.

9 Experimental design and results

The experiments in this section compare MinDomWdeg with the strongest cluster-
based search heuristic: Foretell and focus with MinDomWdeg. To control for the
vagaries of local search, performance during any experiment with Foretell was
averaged across 10 trials for each problem. On each problem, Foretell was given some
number of milliseconds (ms.) per cluster, and identified as many clusters as it could
until a call to VNS failed. Table 3 lists the number, average size, and maximum size
of the clusters detected with Foretell prior to search.

Algorithms were tested on all the classes of composed problems on the benchmark
website [23], where there are 10 problems per class. A problem described there by
a − b − c denotes a central component with a variables, b satellites of eight variables
each and c links. All variables have domain size 10, with constraint tightness 0.150
within the central component and 0.050 on each link. Constraint density within a
satellite is always 0.786. The structure of the composed problems in these classes
is deliberately obscured. Nonetheless, Foretell’s output matches the descriptions
provided for those problems.

The upper section of Table 3 reports those results. In 30 min each, MinDomDeg
could solve only nine of those 90 problems. That and the search tree sizes for
MinDomWdeg suggest that these benchmarks are easier than Comp. On six classes,

Cluster-based structure to solve constraint satisfaction problems 109

T
ab

le
3

A
tt

he
95

%
co

nf
id

en
ce

le
ve

l,
fo

cu
s

ou
tp

er
fo

rm
s

M
in

D
om

W
de

g
on

th
es

e
pr

ob
le

m
cl

as
se

s.
O

rd
er

of
m

ag
ni

tu
de

im
pr

ov
em

en
ts

ov
er

M
in

D
om

W
de

g
ar

e
in

bo
ld

.C
la

ss
es

ab
ov

e
th

e
lin

e
ar

e
co

m
po

se
d,

w
ith

ce
nt

ra
lc

om
po

ne
nt

de
ns

ity
d,

sa
te

lli
te

tig
ht

ne
ss

t′ ,
an

d
lin

k
de

ns
ity

d′
′ .

T
im

e
is

in
C

PU
se

co
nd

s.
D

at
a

fo
r

F
or

et
el

l
in

cl
ud

es
nu

m
be

r
of

cl
us

te
rs

,a
ve

ra
ge

cl
us

te
r

si
ze

,a
nd

m
ax

im
um

cl
us

te
r

si
ze

,a
ve

ra
ge

d
ac

ro
ss

10
ru

ns
.D

at
a

fo
r

fo
cu

s
is

m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

ov
er

10
ru

ns

N
um

be
r

of
M

in
D

om
W

de
g

F
or

et
el

l’s
cl

us
te

rs
F

oc
us

tim
e

F
oc

us
N

od
es

in
st

an
ce

s
T

im
e

N
od

es
C

ou
nt

Si
ze

M
ax

µ
σ

µ
σ

C
om

po
se

d
C

SP
s

d
t′

d′
′

25
–1

0–
20

0.
66

7
0.

50
0.

01
0

10
2.

49
67

0.
10

10
.1

7
5.

20
5.

58
0.

88
0.

47
19

2.
07

14
9.

88
25

–1
–8

0
0.

66
7

0.
65

0.
01

0
10

0.
95

30
8.

00
5.

60
5.

28
6.

08
0.

26
0.

25
94

.5
0

71
.8

1
75

–1
–8

0
0.

21
6

0.
65

0.
13

3
10

2.
32

59
5.

20
9.

09
4.

86
5.

90
0.

37
0.

17
18

1.
40

21
.6

9
25

–1
–2

0.
66

7
0.

65
0.

01
0

10
1.

01
55

3.
00

1.
01

5.
77

5.
77

0.
02

0.
00

41
.4

0
1.

36
25

–1
–2

5
0.

66
7

0.
65

0.
12

5
10

0.
91

46
5.

70
2.

30
5.

60
5.

90
0.

04
0.

02
41

.6
0

1.
29

25
–1

–4
0

0.
66

7
0.

65
0.

20
0

10
1.

10
47

3.
80

5.
00

5.
37

6.
40

0.
07

0.
02

41
.5

0
1.

21
75

–1
–2

0.
21

6
0.

65
0.

00
3

10
3.

33
11

71
.7

0
1.

00
5.

69
5.

69
0.

04
0.

01
91

.6
0

1.
50

75
–1

–2
5

0.
21

6
0.

65
0.

04
2

10
3.

29
10

84
.4

0
5.

40
5.

24
6.

46
0.

15
0.

12
91

.4
0

1.
29

75
–1

–4
0

0.
21

6
0.

65
0.

06
7

10
2.

97
96

0.
90

4.
60

5.
29

5.
80

0.
15

0.
14

91
.3

0
1.

28
C

om
p

0.
15

0
0.

50
0.

12
0

50
83

.5
8

12
51

9.
40

11
.0

0
4.

31
5.

15
4.

31
2.

41
49

7.
96

32
4.

33
R

ea
l-w

or
ld

C
SP

s
n

k
N

um
be

r
of

co
ns

tr
ai

nt
s

R
L

FA
P

sc
en

e
11

68
0

44
41

03
1

36
.9

7
28

10
.0

0
5.

50
12

.4
8

18
.0

0
13

.2
2

0.
14

98
0.

10
1.

45
R

L
FA

P
sc

en
e

11
_f

10
68

0
34

41
03

1
13

3.
24

87
68

.0
0

13
.0

0
11

.9
5

17
.8

0
35

.4
6

0.
06

26
44

.0
0

0.
00

dr
iv

er
lo

gw
09

65
0

12
17

44
7

1
49

8.
98

15
98

7.
00

12
.4

0
17

.4
3

30
.1

0
17

9.
13

17
.9

5
51

19
.0

0
48

9.
70

dr
iv

er
lo

gw
08

cc
40

8
11

93
12

1
85

.8
2

48
80

.0
0

4.
00

31
.7

5
46

.0
0

41
.5

8
0.

06
25

44
.0

0
0.

00
dr

iv
er

lo
gw

08
c

40
8

11
93

12
1

86
.1

1
48

20
.0

0
4.

00
31

.7
5

46
.0

0
35

.6
7

0.
06

22
89

.0
0

0.
00

dr
iv

er
lo

gw
04

27
2

11
38

76
1

6.
01

75
1.

00
18

.8
0

9.
01

23
.8

0
3.

17
0.

38
35

0.
10

51
.8

5
dr

iv
er

lo
gw

02
30

1
8

40
55

1
16

.1
1

18
62

.0
0

18
.8

0
8.

01
15

.8
0

5.
61

1.
42

64
9.

30
18

9.
61

os
-t

ai
lla

rd
-4

–9
5–

0
16

18
2

48
1

28
.5

8
30

3.
00

5.
00

3.
20

4.
00

6.
13

0.
09

95
.0

0
0.

00
os

-t
ai

ila
rd

-4
–9

5–
1

16
22

0
48

1
25

5.
43

47
21

.0
0

5.
00

3.
18

3.
90

14
2.

76
2.

30
15

77
.8

0
10

.1
2

110 X. Li, S.L. Epstein

focus once again provided an order of magnitude speedup. Note that, for a fixed
central component size, focus scales about linearly with problem size.

Clusters are often readily detected in CSPs for real-world problems too. The
lower section of Table 3 includes RLFAP, driverlog, and Taillard jobshop problems.
Scene11 is the most difficult RLFAP; scene11_f10 is a modified scene11 problem
with its highest 10 radio frequencies (domain values) removed. This modification
makes the problem unsolvable and considerably more difficult than the original
problem. The jobshop problems (os-taillard) are intensional CSPs, whose constraints
are defined by predicates. Since their predicates are disjunctive inequalities over
integer intervals, ACE solves the inequalities to calculate constraint tightness, which
Foretell requires. For cluster-based search, time includes the time used by Foretell to
detect clusters. The difficulty of a class of problems is gauged here by the resources
MinDomWdeg required to solve it. On all real-world CSPs, cluster-based search
significantly outperforms MinDomWdeg, at the 95% confidence level, on both time
and nodes. These results support the premise that clusters detected by Foretell
address the hardest parts of a problem. Far fewer incorrect assignments were made
under cluster-based search.

Cluster-based inference was added to cluster-guided search and tested on all
the problems in Table 3. On all the classes of composed problems there was little
room for improvement over cluster-guided search, and none appeared. On RLFAP,
however, cluster-based inference further accelerated cluster-guided search by 4%,
a statistically significant improvement. As Fig. 9 anticipated, the laziness of ACR-
k engendered more mistakes than AC, so there was no concomitant reduction in
nodes. The success of cluster-based inference on RLFAP suggests that Foretell’s
clusters cover enough of the backdoor so that FC suffices for the “outside.” (This
improvement is not attributable solely to FC; FC alone is dramatically slower on
this problem.) On the driverlog problems, cluster-based inference did not improve
cluster-guided search. We suspect that this is because the structure of cluster graphs
is markedly different.

10 Discussion and conclusion

Density and tightness are synergistic. Earlier work [11] tested them separately
on classes of smaller, considerably easier composed problems, ones that even
MinDomDeg could solve. A heuristic that prioritized variables by tightness roughly
halved MinDomDeg’s search time. A heuristic that prioritized variables by density
(with VNS-based near clique detection) consumed about a third of the search time.
When combined in an earlier version of Foretell, however, density and tightness
did an order of magnitude better, and produced nearly backtrack-free search trees
[11]. On smaller composed problems with one or two satellites in the earlier study,
clusters did not harm performance, and they sometimes improved it. While earlier
work and that reported here both use the same local search mechanism to find
crucial substructure, they differ in two significant ways: the key measurement used
to guide local search and the problems tested. The earlier work used tension, the
dynamic reduction in the domains of the neighbors of a variable, while this paper uses
pressure as defined in (6), an estimate of the probability that a variable’s domain will
be reduced when its neighbor is assigned a value. The earlier paper experimented

Cluster-based structure to solve constraint satisfaction problems 111

only on smaller composed problems with extensional constraints generated by the
authors, while this paper emphasizes real-world and benchmark problems, including
far larger composed problems whose scale is closer to that of real-world problems.

10.1 Cluster detection with Foretell

Foretell’s key parameter, cutof f, determines how much time to devote to the detec-
tion of any single cluster. Foretell has no prior knowledge about how many clusters
lie within a problem or about how many might be necessary to solve it. We have
found empirically that too few clusters provide inconsistent guidance, and that, as
cutof f is increased, Foretell finds more consistent sets of clusters from one run to the
next. Consider, for example, the experiments on driverlog-08c reported in Fig. 10,
where each data point represents 10 runs with a single cutof f value. At 30, 35 and
36 ms. per cluster, cutof f was too small—Foretell found no clusters, and the resultant
performance was effectively that of MinDomWdeg. We then tested small cutof f
values further. Values between 37 and 80 ms, produced large variations in both
the identified cluster graphs and the resultant search performance. Foretell found
as many as 29 clusters on some runs at 38 and 45 ms. The best run, however, with
cutof f = 37 ms, found 18 clusters and solved the problem in 18.819 s, about half
the time reported in Table 3. While 37 ms and other cutof f values in that range do
not perform well on average, the structure that led to the 18.819 s solution merits
further study, and may ultimately motivate new heuristics able to support consistent
performance at this level. Larger cutof f values produced more stable Foretell results.

As cutof f increases, the number of detected clusters stabilizes and decreases.
Given more than 80 ms. the same largest cluster in driverlog-08c was found consis-
tently. In general, there is no difference among the identified cluster graphs (Fig. 6f)
and search performance beyond 80 ms. Because total time is the time Foretell uses to
find all clusters plus the time to search for a solution, increasing cutof f can increase
total time. As Fig. 10b shows, however, there is a wide range of cutoff values (from 37
to 1,000 ms), in which the time Foretell actually consumes is lower than this maximum
allocation, indeed at least an order of magnitude lower than the total time, thereby
assuring robust search performance.

In general, smaller cutof f values, although of interest for structure analysis and
the design of new heuristics, are too aggressive to produce consistent performance.
Larger cutoff values lead to consistent cluster graphs and benefit users who seek
to solve the problem effectively. Current work addresses additional termination
conditions for Foretell (line 4 in Algorithm 3). These include an overall VNS time
limit, a Luby-like adaptive cutoff [25] for allocations on successive clusters, and a
limit on the percentage of variables that may be included in either an individual
cluster or the entire cluster graph.

10.2 Why focus works

Variable-ordering heuristics usually do not consider persistence in a “geographic
area” of a problem. Nonetheless, that was clearly satellite’s mistake—even with
foreknowledge about Comp, it satellite hopped, that is, it failed to address enough
variables in the same satellite consecutively. Stay forbade satellite hopping and
resulted in a considerable improvement. Analogously, cluster hopping occurs when

112 X. Li, S.L. Epstein

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

30 35 36 37 38 39 40 45 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Ti
m

e
(s

ec
on

ds
)

Foretell cutoff (milliseconds)

Total Time

Total Time s.d.

#clusters

#clusters s.d.

Max-cluster

Max-cluster s.d.

Avg-cluster-size

0.01

0.10

1.00

10.00

100.00

0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

ec
on

ds
)

Foretell cutoff (milliseconds)

Total Time
Foretell time

(a)

(b)

Fig. 10 Average results of 10 runs on driverlogw-08c. a The relationships between cutof f, the time
allocated to find one cluster, and total time, number of detected clusters, maximum cluster size and
average cluster size. Standard deviations are shown for total time, number of clusters and maximum
cluster size. Total time includes both time to find all clusters and search time to solution. The
x-axis is not proportional to the values of cutof f. b The relationship between Foretell time and total
time

Cluster-based structure to solve constraint satisfaction problems 113

a heuristic fails to address enough variables in the same cluster consecutively.
Because constraints within a cluster are selected for above average tightness, once
any variable in a cluster has been bound, propagation is likely to reduce the domains
of the other variables in that cluster. As a result, variables in a partially-instantiated
cluster are more likely to have smaller domain sizes and make their cluster even
more attractive to cluster-guided search. Tight was permitted to cluster hop, while
focus and concentrate both explicitly forbade it. Focus does better, however, because
it uses knowledge about clusters to select one.

Luckily, remaining in a cluster in Comp is likely to encourage remaining in any
additional clusters within the same satellite. In problems that are not composed,
any other region with sufficiently dense and/or tight connections to a cluster should
also have the domains of its variables reduced when those of the related cluster are
instantiated. In this way, cluster-guided search results in a sequence of decisions that
persist in a particularly constrained region of the graph.

A subproblem reduced to an arc-consistent tree (which always has at least one
solution) would make it safe to continue on to another subproblem. Binding w
variables in a subproblem of size s with density d, leaves a tree only if

d
(

s − w
2

)
≤ s − w − 1, that is, w ≥ s − 2

d
(11)

(Of course, this only makes a tree possible, not certain.) For Comp satellites, s = 20
and d = 0.25, so that there is no possibility of a tree unless w ≥ 12, that is, we
have bound 12 variables and 8 remain (until-8). Our empirical results, however,
show that until-11 minimizes both time and nodes (using a one-tail t-test at the
95% confidence level). This ability to leave behind a (necessarily) cyclic subgraph is
probably attributable to propagation. The occasional retraction back to a “finished”
satellite proved less costly than binding a few more variables in the current satellite
before moving on to the next one. Because clusters in Comp average s = 4.309,
however, w ≥ 0.309, that is, only focus–0 is safe, which is exactly what our results
indicate.

10.3 Clusters and search

The performance of perfect foreknowledge on Comp, as embodied by until-11, is the
gold standard. Until-11 knows a superset of the backdoor and exploits it. Inspection
indicates that the backdoor is probably no more than 35 variables for a Comp
problem. The last retraction on a Comp problem under focus was at a node where an
average of 15.588 variables had been bound, with a maximum of 62.

The structural knowledge learned provides an explanation of where the difficulties
lie in a CSP. Figure 6a focuses attention on the satellites, but the solution with focus
is even more descriptive: it searched within at most three satellites before it reported
the insolvability of Fig. 1. To demonstrate the insolvability of the Comp problem in
Fig. 1, focus bound only 12 variables (out of 200) drawn from three clusters found
by Foretell. Those three clusters, two of size 5 and one of size 4, provide a concise
and more satisfying explanation than either a search tree rooted at a single node or
a collection of edge weights.

114 X. Li, S.L. Epstein

RLFAP and the driverlog problems demonstrate that a problem need not have
satellites to have clusters. On small-world problems, for example, almost every
variable is quickly shown to lie in some cluster. Having clusters, however, does not
justify directing computational resources to Foretell. On easy problems, it is faster
to use MinDomWdeg or even MinDomdeg. Clusters are not detected dynamically,
during search, because Foretell does not find clusters in order of either tightness or
size. To identify a good starting point, focus must therefore choose among a set of
clusters. This static but predictive perspective serves search well.

The two driverlog problems differ in the tuples they allow, but they have the same
primary structure and the same tightness on their constraints. On every run, Foretell
found the identical sparse secondary structure in the two problems, that is, exactly the
same clusters among the 408 variables: three large nodes (two single-cluster nodes
and one two-cluster node) with two edges. That focus improves search on them both
confirms its ability to manage structure dynamically.

Both composed problems and real-world problems have non-random structure
and varying tightness. Traditional heuristics like MinDomDeg perform poorly on
composed problems because of the difference in degree and tightness within the
satellites and the central component. Composed problems provide an elegant, if
artificial, argument for the need to consider tightness during search. Compared to
real-world problems, however, composed problems offer a known structure that
allows us to study (and aspire to) performance given perfect structural knowledge.
(This is the point of the study of Comp in Section 4.) Moreover, composed prob-
lems’ simpler structure makes it easier to monitor the entire search process and
to understand the differences among various search regimens. What was learned
from Comp applies to other artificial structured classes too, as shown in Section 9.
While composed problems are built to confound traditional heuristics in a particular
way, real-world problems are merely difficult. Not surprisingly, the performance
improvements on real-world problems (below the line in Table 3) are noteworthy,
but less dramatic. The insights provided by the structure detected by Foretell,
however, could prove meaningful to a user. For example, people who know RLFAP
Scene 11 well may be interested in Foretell’s detection of just five clusters, which
include only 67 variables out of 680. Three of those clusters form a triangle in the
cluster graph.

As stated earlier in this section, Foretell offers no advantage when a problem is
too easy or is unstructured. We therefore chose representative benchmark instances
that could benefit from Foretell, including a class of seven driverlog problems and
the 11 scenes of the RLFAP problems. Problems shown in the lower part of Table 3
represent the performance improvements Foretell achieved on these two classes of
real-world CSPs. (There was no significant difference on the easier problems.)

Search with Foretell is a two-stage process: First Foretell seeks clusters and then
clusters guide search for a solution. We separated structure detection from structure
guidance because, during search, retractions that back out of a cluster could demand
frequent calls to find new clusters. This overhead could be expensive and reduce
search performance. Thus Foretell is called only before search, and the structural
knowledge learned by Foretell remains static during the subsequent search for a
solution. This strategy appears to be effective for the problems we have tested.

Early departure from clusters during search, as with focus-i in Section 7 and
Table 2, has been shown to be less effective for Comp than focus. The difference

Cluster-based structure to solve constraint satisfaction problems 115

between until-i and focus-i is the structural knowledge on which they rely. Until-i uses
perfect knowledge, which covers the entire satellite, but focus-i only considers the
cluster that partially covers the underlying satellite. Because of this partial coverage
of satellites by clusters, focus needs all the structural knowledge it can muster to
achieve its largest performance improvement. Topics of current work include how
early departure from a cluster affects search on real-world instances, and the relation
between subproblem coverage by clusters (where perfect structural knowledge about
subproblems is available) and performance.

No solver, human or machine, has an efficient way to “see” Fig. 1c perfectly
without knowledge about the problem generator. Generally, a cluster graph is
a prediction of significant structure where global search is likely to fail. A user
confronted with an unsolvable real-world problem could use clusters to reconsider
the problem’s specifications, or at least to understand why a problem is difficult to
solve or has no solution at all. Thus clusters can be used not only to focus attention
during search but also to provide insight into the nature of the problem in a user-
friendly representation.

Methods to detect tight, dense subproblems must not only be incisive, they must
also scale. Every real-world problem that we tested (i.e., all the RLFAP and driver
problems) contained clusters that Foretell found fairly quickly. The Foretell cutof f
for RLFAP scene11, which has roughly three times as many variables as a Comp
problem, is about three times as large as the Foretell cutof f for Comp. This suggests
that Foretell scales linearly.

Several enhancements are currently under development. Not every problem needs
Foretell. The “right” clusters are not necessarily many, but incisive, so Foretell could
partition less than the entire problem. Other problems have more dense structures
and may therefore respond better to other cluster-based orderings. Finally, focus
might attend more closely to learned weights before all the cluster variables have
been bound.

Cluster-based propagation is still under development. Because cluster sizes vary
in real-world problems, ACR seems a wise choice unless the problem has uniformly
small clusters. Cluster-based propagation should be further tailored to the metastruc-
ture of the cluster graph, including cluster size, domain size, variance in internal edge
tightness, and the number and tightness of inter-cluster edges.

Other work introduces the concept of impact, the influence of search space
reduction, for every variable [32], and uses a matrix-based representation to visualize
pair-wise impacts between variables [4]. On artificial instances with tighter subprob-
lems, this visualization shows such structure. It would be interesting to compare the
structure learned by Foretell before search and the impact structure learned during
search.

Although the experiments described here are on binary CSPs, we see no obvious
impediment to adapting this approach for non-binary constraints. As long as there is
some estimate of the tightness of a constraint, it is possible to estimate the pressure on
a variable and to detect sets of mutually-constrained variables by local search. The
swap and score functions would require only some modification. Real-valued do-
mains present a different challenge, one we believe surmountable through the meth-
ods planned for large domains. There are also problems in which Foretell cannot find
any clusters at all. Other structures, such as lengthy cycles, can create search difficulty
without local density [28]. Something similar may be operative in these problems.

116 X. Li, S.L. Epstein

As observed earlier, ACE is not honed for speed. Nonetheless, the concomitant
reductions in checks and nodes searched suggest that clusters will accelerate other,
more agile solvers as well. For an easy problem, no clusters are necessary, and
any reasonable amount of time spent on cluster detection will have no noteworthy
impact. For more challenging problems, however, cluster-guided search substantially
accelerated search with off-the-shelf heuristics on problems with sparse secondary
structure. Given their acuity and explanatory ability, clusters are a worthwhile
preprocessing step.

Acknowledgements This work was supported in part by the National Science Foundation under
awards IIS-0811437 and IIS-0739122. ACE is a joint project with Eugene Freuder and Richard
Wallace of the Cork Constraint Computation Centre. Thanks go to Pierre Hansen for helpful
discussions on VNS.

References

1. Bessière, C., Chmeiss, A., Saîs, L.: Neighborhood-based variable ordering heuristics for the
constraint satisfaction problem. In: Proceedings of Principles and Practice of Constraint
Programming (CP2001), Paphos, Cyprus, pp. 565–569 (2001)

2. Boussemart, F., et al.: Boosting systematic search by weighting constraints. In: Proceedings of
the Sixteenth European Conference on Artificial Intelligence (ECAI-2004), Valencia, Spain,
pp. 146–150 (2004)

3. Cabon, R., et al.: Radio link frequency assignment. Constraints 4, 79–89 (1999)
4. Cambazard, H., Jussien, N.: Identifying and exploiting problem structures using explanation-

based constraint programming. Constraints 11, 295–313 (2006)
5. Cohen, D.A., Green, M.J.: Typed guarded decompositions for constraint satisfaction. In: Pro-

ceedings of Principles and Practice of Constraint Programming (CP2006), Nantes, France,
pp. 122–136 (2006)

6. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learning and cutset
decomposition. Artif. Intell. 41, 273–312 (1990)

7. Dechter, R., Pearl, J.: The cycle-cutset method for improving search performance in AI applica-
tions. In: Proceedings of Third IEEE on AI Applications, Orlando, Florida, pp. 224–230 (1987)

8. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38, 353–366 (1989)
9. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoor detection.

In: Proceedings of Principles and Practice of Constraint Programming (CP2007), pp. 256–270.
Providence, Rhode Island (2007)

10. Epstein, S.L., Freuder, E.C., Wallace, R.J.: Learning to support constraint programmers.
Comput. Intell. 21(4), 337–371 (2005)

11. Epstein, S.L., Wallace, R.J.: Finding crucial subproblems to focus global search. In: Proceed-
ings of IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2006),
Washington, D.C., pp. 151–159 (2006)

12. Freuder, E.C.: Exploiting structure in constraint satisfaction problems. In: Proceedings of Con-
straint Programming: NATO Advanced Science Institute Series, Parnu, Estonia, pp. 54–79
(1994)

13. Freuder, E.C.: A sufficient condition for backtrack-free search. J. ACM 29(1), 24–32 (1982)
14. Gent, I., et al.: An empirical study of dynamic variable ordering heuristics for the constraint

satisfaction problem. In: Proceedings of Principles and Practice of Constraint Programming
(CP1999), pp. 179–193. Cambridge, MA, USA (1996)

15. Gompert, J., Choueiry, B.Y.: A decomposition techniques for CSPs using maximal independent
sets and its integration with local search. In: Proceedings of FLAIRS-2005, Clearwater Beach,
FL, pp. 167–174 (2005)

16. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction problems using
database techniques. Artif. Intell. 66(1), 57–89 (1994)

17. Hansen, P., Mladenovic, N.: Variable neighborhood search. In: Glover, F.W., Kochenberger,
G.A. (eds.) Handbook of Metaheuristics, pp. 145–184. Springer, Berlin (2003)

Cluster-based structure to solve constraint satisfaction problems 117

18. Hansen, P., Mladenovic, N., Urosevic, D.: Variable neighborhood search for the maximum
clique. Discrete Appl. Math. 145, 117–125 (2004)

19. Haralick, R.M., Elliot, G.L.: Increasing tree-search efficiency for constraint satisfaction prob-
lems. Artif. Intell. 14, 263–313 (1980)

20. Hemery, F., et al.: Extracting MUCs from constraint networks. In: Proceedings of 17th European
Conference on Artificial Intelligence (ECAI-2006), Riva del Garda, pp. 113–117 (2006)

21. Junker, U.: QuickXplain: preferred explanations and relaxations for over-constrained problems.
In: Proceedings of AAAI-2004, San Jose, California, pp. 167–172 (2004)

22. Kroc, L., Sabharwal, A., Selman, B.: Counting solution clusters in graph coloring problems using
belief propagation. In: Proceedings of Twenty-Second Annual Conference on Neural Informa-
tion Processing Systems (NIPS-2008), Vancouver, Canada, pp. 873–880 (2008)

23. Lecoutre, C.: Benchmarks—XML representation of CSP instances. Available online at
http://www.cril.univ-artois.fr/∼lecoutre/research/benchmarks/benchmarks.html

24. Li, X., Epstein, S.L.: Visualization for structured constraint satisfaction problems. In: Proceed-
ings of the AAAI workshop on visual representation and reasoning, Atlanta, GA (2010)

25. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Inf. Process.
Lett. 47, 173–180 (1993)

26. Mackworth, A.K., Freuder, E.C.: The complexity of constraint satisfaction revisited. Artif. Intell.
59, 57–62 (1993)

27. Mackworth, A.K., Freuder, E.C.: The complexity of some polynomial network consistency algo-
rithms for constraint satisfaction problems. Artif. Intell. 25(1), 65–74 (1985)

28. Markstrom, K.: Locality and hard SAT-instances. JSAT 2, 221–227 (2006)
29. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability

problems. Science 297(5582), 812–815 (2002)
30. Minton, S., et al.: Solving large scale constraint satisfaction and scheduling problems using a

heuristic repair method. In: Proceedings of AAAI-1990, Boston, MA, pp. 17–24 (1990)
31. Razgon, I., O’Sullivan, B.: Efficient recognition of acyclic clustered constraint satisfaction prob-

lems. In: Proceedings of 11th Annual ERCIM International Workshop on Constraint Solving
and Constraint Logic Programming at CSCLP 2006 (2006)

32. Refalo, P.: Impact-based search strategies for constraint programming. In: Proceedings of
Principles and Practice of Constraint Programming (CP 2004), Toronto, Canada, pp. 556–571
(2004)

33. Ruan, Y., Horvitz, E., Kautz, H.: The backdoor key: a path to understanding problem hardness.
In: Proceedings of AAAI-2004, San Jose, CA, pp. 124–130 (2004)

34. Sabin, D., Freuder, E.C.: Understanding and improving the MAC algorithm. In: Proceedings of
Principles and Practice of Constraint Programming (CP1997), Linz, Austria, pp. 167–181 (1997)

35. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intel. 5(2), 115–135 (1974)
36. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. In: Proceedings

of Principles and Practice of Constraint Programming (CP2006), Nantes, pp. 499–513 (2006)
37. Smith, B.M.: The Brélaz heuristic and optimal static orderings. In: Proceedings of Principles and

Practice of Constraint Programming (CP1999), Alexandria, Virginia, pp. 405–418 (1999)
38. van Dongen, S.: Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2000)
39. Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artif. Intell. 115, 257–287

(1999)
40. Zheng, Y., Choueiry, B.Y.: Applying decomposition methods to crossword puzzle problems.

In: Proceedings of Principles and Practice of Constraint Programming (CP2005), Sitges, Spain,
pp. 874 (2005)

http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/benchmarks.html

	Learning cluster-based structure to solve constraint satisfaction problems
	Abstract
	Introduction
	Background
	Constraint satisfaction problems
	Search for a solution to a CSP
	Global search
	Local search
	Variable neighborhood search

	Related work
	On the exploitation of structural foreknowledge
	Cluster detection with Foretell
	Cluster structure detected in CSPs
	Exploitation of structural knowledge to guide search
	Clusters and inference
	Experimental design and results
	Discussion and conclusion
	Cluster detection with Foretell
	Why focus works
	Clusters and search

	References

